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Abstract

Motivation: Efficient tapping into genomic information from a single microscopic image of an intact DNA molecule
is an outstanding challenge and its solution will open new frontiers in molecular diagnostics. Here, a new computa-
tional method for optical genome mapping utilizing deep learning is presented, termed DeepOM. Utilization of a
convolutional neural network, trained on simulated images of labeled DNA molecules, improves the success rate in
the alignment of DNA images to genomic references.

Results: The method is evaluated on acquired images of human DNA molecules stretched in nano-channels. The
accuracy of the method is benchmarked against state-of-the-art commercial software Bionano Solve. The results
show a significant advantage in alignment success rate for molecules shorter than 50 kb. DeepOM improves the
yield, sensitivity, and throughput of optical genome mapping experiments in applications of human genomics and
microbiology.

Availability and implementation: The source code for the presented method is publicly available at https://github.
com/yevgenin/DeepOM.

1 Introduction

Optical genome mapping (OGM) of DNA (Levy-Sakin and
Ebenstein 2013; Müller and Westerlund 2017; Gruszka et al. 2021)
involves the imaging of fluorescently labeled DNA molecules and
their alignment to reference genome sequences. Consequently, the
resulting best-matching alignment reports on the exact position of
this molecule fragment in one of the organism’s chromosomes. This
information enables multiple applications in molecular diagnostics
and in genomic research.

Example applications of OGM include species identification
(Bouwens et al. 2020; Wand et al. 2019; Grunwald et al. 2015;
Müller et al. 2020) for applications such as pathogen identification
in clinical samples, as well as genome-wide mapping of effects such
as DNA damage (Torchinsky et al. 2019), methylation (Sharim et al.
2019), and structural variations (Ebert et al. 2021). OGM holds sev-
eral advantages compared to DNA sequencing; for one, it produces
extremely long reads of potentially megabase size, which are

necessary for mapping large-scale structural and copy number varia-
tions in the genome. Additionally, as a single-molecule technique, it
holds the potential for extremely high sensitivity, i.e. detection of
low quantities of target DNA (Margalit et al. 2021), which is neces-
sary in applications such as cultivation-free pathogen identification
(Müller et al. 2020).

Given an image of a DNA molecule labeled at a specific sequence
motif, multiple computational approaches have been proposed for
its alignment to a reference genome sequence. If the labelling is
sparse enough so that individual fluorescent labels can be separated,
the positions of the labels are determined using standard localization
techniques, such as emitter centroid fitting (Lelek et al. 2021). Then,
dynamic programming algorithms (Valouev et al. 2006) are
employed to align the label positions to the expected positions of the
labeled motif in a reference genome sequence. When the labeled
motif is dense in the genome and does not allow for the separation
of individual labels, a different approach was used (Bouwens et al.
2020; Wand et al. 2019; Grunwald et al. 2015; Müller et al. 2020),
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in which the intensity profile along the imaged molecule is aligned
by cross-correlation to the theoretical intensity profile expected
from the density of the labeled motif in the reference genome.

The accuracy of OGM can be defined as the expected fraction of
imaged molecules that are aligned with high confidence to the refer-
ence genome. This accuracy is extremely important for applications
where the target DNA quantity in the sample is limited, such as
cultivation-free pathogen identification (Müller et al. 2020), or
where maximal coverage of the genome is required per mapping ex-
periment, such as in rare variant detection (Margalit et al. 2022) or
epigenetic mapping (Gabrieli et al. 2018, 2022). The current compu-
tational approaches are limited in accuracy since they are unable to
extract all the available information from the image of the DNA
molecule. Specifically, when emitters are overlapping inside a
diffraction-limited spot, classic approaches usually cannot separate
them.

In this study, in order to maximize the information extracted
from the molecule image, a deep learning approach is presented.
Convolutional neural networks (CNNs) were previously shown to
become the state-of-the-art for single molecule localization micros-
copy (SMLM) (Nehme et al. 2018, 2020; Speiser et al. 2021). Here,
a similar approach is applied to OGM, and its advantage is demon-
strated in images of sparsely labeled DNA molecules stretched in
nanochannels. The alignment accuracy of the presented method
DeepOM is compared against the commercial Bionano Solve soft-
ware which localizes sparse emitters, neglecting their diffraction-
limited image overlap. In contrast, the localization neural network
of DeepOM enables the separation of multiple fluorescent emitters
that are within a diffraction-limited spot. Since the probability for
wrong alignment of optical maps, as was theoretically shown,
depends exponentially on the number of localized labels in the query
molecule (Anantharaman and Mishra 2001), the detection of more
labels per kilobase of DNA by DeepOM, results in a significantly
higher alignment success rate.

2 Materials and methods

2.1 The DeepOM method
The DeepOM alignment of a DNA molecule to a reference genome
sequence starts from query images of molecules fluorescently labeled
at specific motifs (Fig. 1). The motif CTTAAG (referred to as DLE-1
by Bionano Genomics) was labeled in this study. In each molecule
image, the labels are localized by a localization neural network,
resulting in a query map of 1D pixel positions of labels along the
length of the molecule. A reference map is the sequence of base-pair
positions of the labeled motif in a reference genome sequence. The
resulting query map is aligned to the reference map with the dynam-
ic programming alignment algorithm presented below.

2.2 Localization neural network
A localization neural net model was trained following DeepStorm
(Nehme et al. 2018), DeepStorm3D (Nehme et al. 2020), and
DECODE (Speiser et al. 2021), where the models are trained in a
supervised manner on simulated images from randomly generated
ground-truth emitter positions, derived using an optical forward
model. Here, a 2D Gaussian point-spread function (PSF) was used
for the optical forward model, and emitter positions were confined
to a straight line segment (Fig. 2). Following DECODE (Speiser
et al. 2021), and DeepStorm (Nehme et al. 2018), a U-Net (Milletari
et al. 2016) was used, but with 1D convolutional layers instead of
2D convolutional layers. The input image to the network, which is
five pixels wide and 100–1000 pixels long (depending on the length
of the molecule), was regarded as a 1D image with five channels
(one channel per image row). The last layer of the U-Net was modi-
fied to output two 1D vectors, which correspond to two output
numbers per 1D pixel: (a) Occupancy probability, i.e. the probabil-
ity for having an emitter in a pixel and (b) the relative position of

the emitter inside the pixel if the pixel contains an emitter. This is
valid assuming there is at most one emitter per pixel, which is a
good approximation for most datasets of interest, including the one
presented here. For the two neural network output numbers defined
above, the loss L is computed as a sum of two loss terms: the
occupancy loss Locc, and the localization loss Lloc,

LðX; X̂;K; K̂Þ ¼ LoccðX; X̂Þ þ X̂LlocðK; K̂Þ; (1)

where Xi is the predicted probability for having an emitter in a pixel
i; X̂ i is the ground-truth emitter existence in the pixel, equal to 1 if
an emitter is in a pixel and 0 otherwise; Ki is the relative position of
an emitter inside the pixel ranging from 0 for the left pixel edge to 1
for the right pixel edge. This position has a meaningful value only in
the pixels containing emitters, so the localization loss Lloc is masked
with X̂ in the equation; K̂ i is the ground-truth relative position of an
emitter inside the pixel computed from ground-truth emitter
positions, which are known in the simulated data. The loss terms
themselves were computed as,

LoccðX; X̂Þ ¼ LdiceðX; X̂Þ þ
X

i

LbceðXi; X̂ iÞ; (2)

LlocðK; K̂Þ ¼
X

i

LbceðKi; K̂ iÞ; (3)

where the i-summation is over the 1D pixel indices along the length
of the molecule image, and with Dice-Loss (Sudre et al. 2017) Ldice

and Binary-Cross-Entropy Lbce defined as,

LdiceðX; X̂Þ ¼ 1� 10�5 þ 2
P

i XiX̂ i

10�5 þ
P

i Xi þ
P

i X̂ i

; (4)

Lbceðx; yÞ ¼ �x logðyÞ � ð1� xÞ logð1� yÞ: (5)

In each gradient descent training step, the model was presented
with a batch of randomly generated DNA molecule images, and the
loss was computed as described above using the ground truth posi-
tions of emitters in the molecule (Fig. 2). Training was done for
10 000 steps with a 256 batch size. More training details are given
in Supplementary Fig. S1 in Supplementary Appendix S1, and net-
work architecture is described in Supplementary Appendix S2.

2.3 Training dataset
The training dataset was generated by simulating DNA molecule
images with randomly generated emitter positions, representing ran-
domly generated genome sequences as shown in Fig. 2. The follow-
ing average parameter values were used for the generation of the
images: pixel size of 335 basepairs, average emitter density of 1
emitter per 4096 basepairs (each basepair has a 1/4096 probability
of containing an emitter), Gaussian point spread function (PSF) with
a standard deviation of 1.5 pixels, signal-to-noise ratio (SNR) of
2.33. In contrast to the training dataset, the test dataset used in this
study consisted of experimental images of DNA molecules, originat-
ing from the real human genome. In the same manner as in
DECODE (Speiser et al. 2021), the training images were continuous-
ly generated and each image is used only once as a training target.
For this reason, the training dataset is infinite and the model cannot
overfit to the training images. Thus, no separate validation dataset is
necessary (Speiser et al. 2021) (the new images serve as validation),
and the test set consisting of experimental DNA molecules, was used
to evaluate the model.

2.4 Alignment algorithm
The algorithm by Valouev et al. (2006) was implemented to align
the localized labels in a DNA molecule to the reference genome. An
alignment of a DNA query molecule and a reference genome se-
quence is a set of labeled position pairs from the query and
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reference. The implementation of the algorithm computes the fol-
lowing dynamic programming recurrence equation for the alignment
score matrix Si;j,

Si;j ¼ 1þ max
i� d � g < i
j� d � h < j

Sg;hþ
�a�1jjri � rgj � jqj � qhjjþ
�b�1ji� g� 1þ j� h� 1jþ

8<
:

9=
;: (6)

Then, the alignment is traversed back starting from the maximal
cell value in the score matrix. ri is the reference positions vector
indexed by the integers i or g, and qj is the query positions vector
indexed by the integers j or h. The query vector q ¼ sx is obtained
by converting the pixel value x of localized emitters to basepairs
through a conversion scale factor s ¼ 335 bp

pixel. d¼5 is the allowed
margin for missing labels in query or reference, a¼500 is the pen-
alty factor for localization error, b¼10 is the penalty factor for a
missing label in the alignment. Si;j is the score of the top-scoring
alignment of ri and qj ending in indices i, j.

3 Sample preparation and imaging

3.1 Cell culture
U2OS (human OS) cell line was cultured in Dulbecco’s Modified
Eagle medium, supplemented with 10% fetal bovine serum (Gibco,
Amarillo, TX), 2 mM l-glutamine, and 1% penicillin-streptomycin
(10 000 U/ml; Gibco) and incubated at 37�C with 5% CO2.

3.2 DNA extraction
DNA was extracted from 106 cells using the Bionano Prep Cell
Culture DNA Isolation Protocol according to manufacturer’s
instructions.

3.3 DNA labeling
One microgram of DNA was directly labeled and stained using DLS
labeling kit (Bionano Genomics) composed of a single enzymatic
labeling reaction with DLE-1 enzyme followed by DNA staining

Figure 1 Optical genome mapping using DeepOM. DNA molecules are fluorescently labeled at specific sequence motifs, CTTAAG in this study. Then, they are stretched in

nano-channels and imaged in a microscope. The images are analyzed by the DeepOM software, and each molecule is aligned to its top matching position in one of the reference

genome sequences

Figure 2 Simulated DNA molecule used for localizer neural net training. Ground-truth label positions and the predicted localizations by the neural net are shown. Random gen-

erated emitter positions were confined to a straight line segment, convolved with a 2D Gaussian point-spread function (PSF), and noise was added to the image
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with a fluorescent marker. One microgram of DNA was mixed with
6ml of 5� DLE-buffer, 2ml of 20� DL-Green, and 2ml of DLE-1 en-
zyme (Bionano Genomics) in a total reaction volume of 30ml and
incubated for 2 h at 37�C.

3.4 DNA imaging
DNA image data were generated on the Saphyr instrument (Bionano
Genomics) with Saphyr chips (G1.2). The chip was loaded as recom-
mended by Bionano Genomics.

4 Results and discussion

The accuracy of DeepOM’s alignments was evaluated on images
(Fig. 3) produced from the Bionano Genomics Saphyr system
described in Section 2. The reference genome used for alignments is
the reference human genome GRCh38 (Nurk et al. 2022). The
ground truth for alignments was generated as follows. All molecules
longer than 450 kb were taken from the imaged data, and aligned to
the reference genome with the Bionano Solve software. Out of those,
the top 512 molecules were chosen by their Bionano alignment con-
fidence score (see Bionano documentation https://bionanogenomics.
com/support-page/data-analysis-documentation/). Each chosen long
molecule image was digitally cropped (Arielly and Ebenstein 2018)
into random short fragments (Fig. 3). Since each cropped fragment’s
position is known within the parent molecule, its aligned position
can be regarded as a ground truth for the purpose of the alignment
accuracy evaluation. Each cropped fragment image is fed into the
DeepOM pipeline and aligned to the reference genome, then if the
alignment matches the ground truth it is counted as correct.

To make the comparison to the Bionano Solve software, cropping
of the long molecules was done digitally by manipulation of the
Bionano BNX output files (see Bionano documentation) produced
from the imaging experiment. The BNX file contains a localization list
for the emitters in each molecule, and the molecules’ coordinates in the
captured field-of-view image. In order to generate the cropped frag-
ments in the BNX file, labels were deleted from the localization list

according to the cropped fragments (Fig. 3). First, we demonstrate the
effectiveness of dense localization by the neural net, compared to stand-
ard, sparse localization, which discards closely spaced emitters. To do
so, the localization list for each cropped molecule was aligned to the
reference using the DeepOM alignment algorithm (Section 2), and the
success rate is shown in Fig. 4a, presenting the comparison of the
DeepOM localizer and the Bionano localizer both using the same align-
ment algorithm of DeepOM.

Next, the whole DeepOM pipeline was compared versus the full
Bionano localizer and aligner pipeline, on a subset of molecules. To
run the Bionano pipeline, a new BNX input file was generated con-
taining random crops from the chosen molecules. Then, the file was
fed as input to the Bionano Solve aligner. The success rate compari-
son of the full pipelines is shown in Fig. 4b.

In both comparison methods, the results in Fig. 4 show more
than a 2-fold improvement factor in the success rate for fragments
shorter than 50 kb. Notably, optimizing the alignment algorithm,
together with the localization neural net, further improves the align-
ment success rate, as can be seen when comparing the DeepOM
aligner to the Bionano aligner, when both using the same localizer
(Fig. 4b). Additional evaluations versus simulated data, versus other
localization methods, and comparison of run-times are in
Supplementary Appendices S3 and S4.

5 Conclusions

In this study, an improved computational method for optical genome
mapping was presented. A CNN was employed to significantly im-
prove the success rate of alignments, as compared to a state-of-the-art
non-overlapping approach. The accuracy of the presented method,
DeepOM, was compared against the state-of-the-art commercial
Bionano Solve on human cell-line DNA data acquired with the
Bionano Saphyr system. The advantage of the presented method is
most dominant for DNA fragments in the range 50–150 kb, where it
yields up to twofold more successful alignments (Fig. 4b). This is espe-
cially significant given that the Bionano Genomics pipeline

Figure 3 Experimentally imaged DNA molecules and their alignment to the human genome. (a) Zoomed-in field-of-view of an image captured in the Bionano Saphyr system.

DNA molecules are stretched here in nano-channels of the Bionano Chip. (b) Zoomed-in view to a 500 kb molecule from the field-of-view image (a). This molecule is used as a

ground-truth for alignment of its cropped sub-fragments. Cropped sub-fragment (white dashed rectangle), zoomed-in in c. The reference genome labeled motif (CTTAAG) sites

are shown, in relative offset to human genome coordinates shown on the x-axis. The alignment of the molecule to the reference was done both by Bionano Solve and

DeepOM, and the resulting genome coordinates were practically identical. (c) An example cropped fragment used for the alignment success rate comparison. Shown are

Bionano Solve localizations, DeepOM localizations. The reference sites genome coordinates of the parent molecule are used as a ground-truth for the evaluation of the success

of this fragment’s alignment. The advantage of DeepOM is manifested here, where pairs of tightly spaced labeled motifs are separated by the neural net, while the classical lo-

calization approach detects only one label at the diffraction limited spot. This in turn, leads to more confident and accurate alignments with higher success rates
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recommends filtering out molecules shorter than 150 kb in order to
provide a high mapping rate. In contrast, DeepOM allows exploiting
the information from these shorter molecules. DeepOM enables higher
genome coverage from a given sample, enhancing the ability to detect
low-frequency structural variations. The DeepOM method can also be
potentially applicable to images of DNA molecules stretched on a free
surface and not in nanochannels, provided the appropriate pre-
processing and segmentation algorithms for the images. In conclusion,
the presented method may be utilized in molecular diagnostic applica-
tions such as epigenetic profiling, and pathogen species identification,
where it can significantly increase the fraction of identified molecules,
enabling higher diagnostic sensitivity.
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