bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.510495; this version posted October 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Epigenetic aging waves:	1
Artificial intelligence detects clustering of switch points in DNA	2
methylation rate in defined sex-dependent age periods	3
Elad Segev ^{1,2} #, Tamar Shahal ¹ #, Thomas Konstantinovsky ^{1,3} #, Yonit Marcus ^{1,4} , Gabi	4
Shefer ¹ , Yuval Ebenstein ^{1,5} , Metsada Pasmanik-Chor ⁶ , Naftali Stern ^{1,4}	5
	6
1. The Sagol Center for Epigenetics of Aging and Metabolism, Institute of	7
Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center;	8
Sackler Faculty of Medicine, Tel Aviv University, Israel.	9
2. Department of Applied Mathematics, Holon Institute of Technology, Israel	10
3. Department of Engineering, Bar Ilan University, Israel	11
4. The Sackler Faculty of Medicine, Tel-Aviv University, Israel	12
5. Department of Chemistry, Tel Aviv University, Israel.	13
6. Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv	14
University, Israel	15
	16
#contributed equally	17
Correspondence: Naftali Stern, MD, The Sagol Center for Epigenetics of Metabolism and	18
Aging, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky	19
Medical Center Sackler Faculty of Medicine, Tel Aviv University, Israel, Tel: 972-3-	20
6973732 ; Fax: 972-3-6973035, e-mail: naftalis@tlvmc.gov.il	21

Abstract

<u>Background:</u> Aging is linked to hypermethylation of CpG sites on promoters and enhancers,
24
along with loss of methylation in intergenic zones. That such changes are not necessarily a
25
continuous process is exemplified by the extensive changes in DNA methylation during
26
development with another significant time of change during adolescence. However, the
27
relation between age and DNA methylation during adult life has not been systematically
28
evaluated. In particular, potential changes in methylation trends in the same CpGs over the
29
years that may occur with aging remain largely unexplored.

Methods: Here we set out to determine the average trends by age of the CpG sites represented 31 in the Illumina 450 platform, based on data from 2143 subjects of the age range of 20 to 80 32 years, compiled from 24 different cohorts. Using several mathematical procedures, we 33 initially separated stationary probes from probes whose methylation changes with age. Among 34 the latter, representing ~20% of the probes, we then focused on the identification of CpG sites 35 with switch points, i.e., a point where a stable trend of change in the age-averaged methylation 36 is replaced by another linear trend. 37

Results: Using several mathematical modeling steps, we generated a machine learning model 38 that identified 5175 CpG sites with switch points in age-related changes in the trend of 39 methylation over the years. Switch points reflect acceleration, deceleration or change of 40 direction of the alteration of methylation with age. The 5175 switch points were limited to 41 2813 genes in three waves, 80% of which were identical in men and women. A medium-size 42 wave was seen in the early forties, succeeded by a dominant wave as of the late fifties, lasting 43 up to 8 years each. Waves appeared~4-5 years earlier in men. No switch points were detected 44 on CpGs mapped to the X chromosome. 45

Conclusion: In non-stationary CpG sites, concomitant switch points in age related changes in	46
methylations can be seen in a defined group of sites and genes, which cluster in 3 age- and	47
sex- specific waves.	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65

Introduction

66

Age-related changes in DNA methylation have been recognized for more than four decades 67 (1-3). In brief, global DNA methylation declines from the onset of adulthood to advanced age 68 (4-7), but this trend is comprised of two opposing vectors: CpG sites with overall low DNA 69 methylation, such as promoter-associated CpG islands, tend to increase methylation with age, 70 whereas hypermethylated DNA zones, such as intergenic non-island CpGs tend to lose 71 methylation with age. The resultant overall decrease in global DNA methylation with age 72 reflects the fact that CpGs residing outside of CpG islands and tend to be hypermethylated 73 outnumber the CpG sites in the CpG islands, whose methylation level rises with the passage 74 of time (8-10). This also leads to a gradual shift in DNA methylation levels toward the mean 75 with increasing age (8-12). Age-related changes in DNA methylation tend to occur 76 preferentially at CpG island shores and shelves and enhancers (13). That certain CpG sites are 77 closely and linearly related to age has been utilized by Horvath et al (4,5), Hannum (11), and 78 Weidner et al (12) to formulate the concept of age/time related epigenetic clocks, according 79 to which an epigenetic age, in years, can be mathematically derived from specific CpG sites 80 such that it approximately parallels the chronological age. Shahal et al. (14) subsequently 81 deconvoluted the Horvath's epigenetic clock to its components, showing significant inter-82 individual variability. Furthermore, a large body of work now links upward drifting from the 83 epigenetic age, which reflects accelerated epigenetic aging, to earlier mortality, decreased 84 healthy longevity and a number of diseases, such as breast cancer (15-21). Since most 85 epigenome-wide DNA methylation data is now based on large platforms identifying the level 86 of methylation in predefined CpG sites, it is of interest that Florath et al (7) who analyzed 87 >480000 CpG sites in whole blood DNA of a population-based cohort study aged between 50 88 and 75 years, found only 162 CpG sites with the high Spearman correlation coefficients 89 (R>0.6) between DNA methylation and age. 90

Whereas these and likely other CpG sites selected to comprise the basis for "epigenetic clocks" 91 apparently serve as excellent aging markers, or may even be causatively linked to the aging 92 process, they are obviously too few to account for the large age-related changes seen in DNA 93 methylation. Because many reports revealed the linear relation to age and its link to health 94 conditions, we sought, in the present report, to explore the overall pattern/s of changes in DNA 95 methylation as a function of age. However, non-liner changes in DNA methylation with age 96 have been previously reported in humans (22) and canids (23). Extreme examples of large 97 changes in DNA methylation are known to occur in specific ages in early life: after birth, 98 average DNA methylation levels increase in blood throughout the first year of life (24,25). 99 Likewise, during adolescent transition changes in DNA methylation were observed in more 100 than 15000 CpGs, many of which were associated with genes relevant to cell growth and 101 immune system development (26). 102

CpG In the present study we pursued the following aims: 1) To identify non-stationary 103 sites, i.e., all CpG methylation sites that undergo detectable age-related changes between the 104 age of 20 and 80 years. 2) To identify CpG sites with age-related switch point (SP), i.e., CpG 105 sites whose methylation fraction changes in a curvilinear manner such that changes in DNA 106 methylation are either accelerated, decelerated or switch their trend direction at a certain age. 107 108 3) To investigate the possibility that acceleration or deceleration in methylation cluster around defined age-related zones (e.g., perimenopause). To this aim we used a compiled data base 109 constructed of 24 different published cohorts who all used the Illumina 450K human DNA 110 methylation platform. 111

Methods

We extracted data from published databases and performed several analytical procedures 113 resulting in the development of an artificial model that can identify the CpGs with a SP 114

(epigenetic switch point; ESP) in their mean methylation fraction between the ages of 20 and 115

80 years. The entire process is described in Fig1.

117

122

116

Figure 1: A schematic overview of the data extraction and analytical procedures used for the	118
identification of ESP.	119
Data acquisition and processing	120
1. Crawling over GSE samples: We used an extensive automatic web crawler to search for	121

all available repositories that match our query for whole blood and healthy subjects at the

	age range of 20-80 years (14) from the Gene Expression Omnibus (GEO) Data sets	123
	repository.	124
2.	Downloading healthy whole blood samples: All relevant β values and idat values were	125
	downloaded, Samples with idat values were converted to β values using champ package	126
	(27)	127
		128
3.	Data Filtration and verification: All samples were manually inspected. Samples from	129
	datasets that were not labeled as healthy and contained case-control groups were manually	130
	examined to ensure that control samples were indeed healthy. The entire process yielded	131
	a total of 2221 samples from 24 different data sets, which were then subjected to further	132
	analysis	133
4.	Data treatment: The β values of all filtered samples were normalized using BMIQ code	134
	"champ.norm" implemented at Champ package (28).	135
5.	Correction for cell type heterogeneity: We corrected for cell type heterogeneity using	136
	"champ.refbase" implemented at Champ package (29).	137
6.	K-nearest neighbors' algorithm [KNN] for completing 47 missing probes: To maximize	138
0.	the preservation of CpG sites and remove poor-quality samples across the different	139
	datasets we used a k-nearest neighbors' algorithm (KNN) based approach. To infer the	140
	degree of relative similarity between the different samples based on their CpG site ß	141
	values, the sample-linked gender, age and the percentage of missing CpG sites were	142
	entered. In the process of searching for the nearest neighbors sharing the same metadata	143
	(age, gender, similar β values) and emplacing the missing β values with the values of the	144
	closest neighbor, 47 samples could be thus adjusted and were retained. However, 78 other	145
	samples for which no nearest neighbor were removed from our dataset. The entire process	146
	vielded a total of 2221 samples from 24 different data sets, which were then subjected to	147
	j a total of sumples from - anterent auta bets, which were then budgetted to	- • •

further analysis (table 1S). Of the resulting 2143 samples, 1119 were females and 1024 148 males, with an age distribution presented in figure S1, supplementary file S1. 149

7. Probe averaging based on age: Probes missing in more than 1% of our dataset were 150 filtered out, leaving 341,247 probes. The 2143 samples were tabulated by age and the 151 average β for each CpG site was calculated for each age (in years, between 20-80). This 152 data structure allowed us to remove noise and converge to age-specific trends. Moreover, 153 it reduced the data spread from 2143 columns for each of the 341,247 probs to 61 154 columns, a ~35-fold condensation which allowed more extensive calculations. Hence, we 155 ended up handling a data set of 61 columns, one column for each year of age (20-80 years) 156 with a mean β value for each CpG site in each of the cells. This data representation not 157 only reduced the size of the data analyzed but also can be viewed as a signal sampled with 158 a frequency of 1 year, which allows the usage of a vast variety of tools, algorithms and 159 mathematical models derived from the branches of time series analysis to uncover hidden 160 aging patterns that may appear as methylation β values. An example as to how such a 161 signal of a CpG site looks before and after the averaging can be seen in Figure 3A, B, E, 162

F.

Dickey-Fuller stationary Test: Since we strived to focus on CpG sites that undergo 8. 164 significant change over the age years of 20-80, we applied the augmented Dickey–Fuller 165 test, which afforded the identification of stationary probes, i.e., probes that do not change 166 significantly (p <0.05) in terms of their means, standard deviations (SD) as well as 167 seasonal (cyclic, sinus-like) behavior. This is conceptually depicted in Figure 2, in which 168 4 hypothetical probes are presented. The black curve represents a stationary probe which 169 undergoes no significant change in the beta value or SD. Such hypothetical signal probes 170 can be statistically described as discrete variables with normal distribution and a given 171 mean and SD. Since there is no significant change across the years, in either the beta value 172 or the SD, these probes were not further considered for evaluation in the present report. 173

On the other hand, the red orange 174 and green curves are non-stationary 175 signals representing change in beta 176 value, SD, or seasonality behavior 177 (sine function-like behavior), 178 respectively, over time. In all, this 179 analysis revealed 69,275 "non-180 stationary" CpG cites. 181

Figure2: Four hypothetical CpG signals: in black, a stationary signal; the red, orange and183green curves exemplify three different non-stationary signals: a signal with an ascending184change in beta value over time in red; in orange, a signal showing a change in SD value185over time, and in green a signal with seasonal behavior, i.e., a sine like behavior.186

9. *STL Decomposition / Trend analysis:* Seasonal and Trend using Loess decomposition 188 (STL) was used to reduce noise (30). This mathematical method allows the splitting of 189 the CpG signal over time into three components: trend, seasonal and a remainder (noise) 190 component. The average methylation curve between 20 to 80 years before and after STL 191 process can be seen for probes cg03037684 and cg16803083 mapped to ESR1 gene and 192 to a region that was not annotated, respectively in figure 3B and C, and in figure 3 F and 193 G, respectively.

195

Figure 3: Mean change in β values of two CpG sites between the ages of 20 to 80 years. A-196 D and E-H represent 2 CpG sites with a change in mean methylation fraction with age, one 197 with (cg03037684; mapped to ESR1; curvilinear change) and the other without an ESP 198 (cg16803083; linear change), respectively. (A, E) the original data of the β values of 2143 199 individuals between 20 to 80 years old, (B, F) Average β values of all individuals (presented 200 in A, E, respectively) at the same age with one year resolution, (C, G) An STL analysis of 201 the average values presented in B and F (blue line), a piecewise model fitting to the STL 202 data is presented as two linear red dashed lines, and (D, H) The first derivative of the 203 averaged data following SLT, yields a sigmoid shape curve in D and a close to horizontal 204

shaped curve in H (blue lines). The dashed red line shows the close fitting of a sigmoid to
205
the STL average data. Color code in A and E is for the density of the number of individuals
206
for each beta value and for each age (per one year interval; red for most dense and blue for
207
list dense).

209

- 10. Switch point analysis-Piecewise Regression & Sigmoid fitting: The previous filtering
 eliminated CpG sites showing no significant change with age. We next identified CpG
 sites with ESP, i.e., CpG sites having a definable behavior until a certain age, but
 showing a change in behavior as of a specific age and on as demonstrated in figure 3A-D.
 To this aim we combined two methods which generated parameters for the construction
 of an artificial model that we subsequently used for the identification and selection of
 ESPs.
 - A. *Piecewise regression analysis*, which is based on fitting two linear curves to the 217 average methylation values at each year of age between 20 to 80 years (red dashed 218 lines in figure 3C and 3G) as formulated in equation 1, where $(\alpha_1, \alpha_2, \beta_1, \beta_2)$ are the 219 intercepts and slopes of each of the linear curve, respectively, calculated based on the 220 least squares, and S_p is the switch point. 221
 - Equation 1:

$$Piecewise(age_{i}) = \begin{cases} \alpha_{1} + \beta_{1} * (age_{i} - 20), 20 < age_{i} \le S_{p} \\ \alpha_{2} + \beta_{2} * (age_{i} - S_{p}), S_{p} < age_{i} \le 80 \end{cases}$$
223

224

225

- The age of switch point is where the two fitted linear curves meet.
- 226
- B. *Sigmoid fitting analysis*, which is based on fitting a sigmoid curve to the first 227 derivative of the average β values, between 20 to 80 years, with 1 year intervals for 228

each of our non- stationary CpGs sites. In Figure 3D and 3H the first derivatives of 229 average β values are presented as blue lines and the fitting to a sigmoid as dashed red 230 lines, as described in equation 2, where x is the age, λ the middle of the sigmoid and 231 S,B, and K are scaling parameters (supplementary file S1). 232

Equation 2:
$$F(x) = \frac{S}{(1+e^{-K*(x-\lambda)})+B}$$
 234

235

233

The least squares method was used to calculate the optimal parameters (S, B, K, λ).236The age of SP, then, is the inflection point of the sigmoid curve (indicated by the237vertical grey dashed arrow in Figure 3D).238

239

The piecewise analysis provides a very ideal behavior of a particular time point where the 240 linearity of a beta values of a CpG site changes. Mathematically it is equivalent to a single 241 point in which the slope changes and can be defined as discontinuous for its first derivative 242 (Figure 4A). In population studies, a switch point will not be seen insentiently at a certain 243 age but will rather take place gradually over several years. Therefore, a sigmoid curve, 244 fitted to the first derivative of our non- stationary, STL-processed average β values between 245 20 to 80 years, may better describe the gradual emergence of a SP, as illustrated in figure 246 4B). According to this analysis, the behavior of ESPs can be also characterized by a 247 bilinear course having the first slope of methylation loss/ gain rate up to a certain age range 248 and a second different slope from that age range onwards, as described in figure 3C. This 249 is depicted by the two green arrows, where the vertical green lines denote the start and the 250 end of an ESP period. 251

Figure 4:illustration of the first253derivative of β values of a SP CpG254site from 20 to 80 years. (A) an255instantaneous SP, (B) a gradual, more256realistic SP.257

258

11. Artificial model for the259identification of switch points:To260filter out poor quality and/or noisy261

probes, we constructed a mathematical model resulting in a collection of parameters 262 which were used to distinguish between valid and non-valid SP CpGs. The model was 263 based on an in person, CpG by CpG, visual inspection of randomly selected 1500 CpG 264 sites and their features (as detailed below) out of the entire non-stationary 69,275 CpG 265 sites population. During this procedure each screened CpG was labelled as having/not 266 having a SP. ESP sites were identified as such only if any of the following exclusion 267 criteria was present: a) the first derivative of the curve of the average β values as a 268 function of age, did not fit a sigmoid curve, as indicated, for example, by the horizontal, 269 first derivative curve derived from a linear methylation gain with age (figure 3H); b) 270 derived STL was incompatible with the original data curve, c) the STL suggested the 271 existence of a SP, but the actual curve could be fitted into an alternative pattern; d) a SP 272 point generated by an abrupt and large change in beta values, which is likely fortuitous 273 secondary to technicalities as may be suggested from the illustration in figure 4A. The 274 piecewise regression and sigmoid models were used to derive 19 parameters (table 2S in 275 supplementary). Based on in person visual inspection of the 1500 CpG sites, a decision 276

tree model was trained and evaluated with an average F1 Score of 0.89 on 5 fold cross 277 validation. The decision tree model was then used to examine all 69,275 non-stationary 278 probes in order to distinguish valid ESP probes from invalid probes. Eventually, 5175 279 probes that passed this filtration process were identified as ESPs. 280

281

282

Pathway enrichment analysis for ESP genes

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (31) was performed283using DAVID (32) based on the 2,813 genes mapped to the 5175 ESPs. Pathways with284Benjamini < 0.05 were considered as significantly enriched.</td>285

Presence of ESP in genes associated with aging and longevity

286

We compiled a list of aging and longevity genes by assembling genes from four databases that 287 gathered The Human Genomic are in Ageing Resources 288 (HAGR) https://genomics.senescence.info/ (33): 1) GenAge: Database of Aging-Related 289 Genes, which includes a curated database of over 300 genes related to human aging and a 290 database of over 2000 aging- and longevity-associated genes in model organisms (34,35), 2) 291 GenDR: Database of Dietary Restriction-Related Genes based on genetic manipulation 292 experiments and gene expression profiling (36,37), 3) LongevityMap: a database of human 293 genetic variants associated with longevity of over 2000 genes, some were found to be essential 294 and some had no relation to longevity, 4) CellAge: Database of Cell Senescence Genes (38). 295 Only genes that were found in either human, mouse or human cultured cells, were included in 296 our list. From the LongevityMap database, we only included the genes that were found 297 essential to longevity and deleted the non-essential ones. Finally, we deleted duplications and 298 came up with a list of 973 resource genes related to aging and longevity. Venny 2.0.2 (39) 299 was used to check for common ESP genes and aging/ longevity related genes. 300 bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.510495; this version posted October 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Results

314

315

Stationary vs. non-stationary CpG sites: change in DNA methylation level in relation302to age and the identification of CpG sites with an ESP behavior303

We analyzed the trends of the average methylation level (β values), calculated for each year 304 of age at each age point, from the age of 20 to the age of 80 years and found that the vast 305 majority of the \sim 340K CpG sites (n=341,247), eventually available for analysis, were 306 stationary whereas 69,275 were found to be "non- stationary" (Materials and methods). We 307 next examined the behavior of the non-stationary probe population and selected these with a 308 clear ESP. The age of ESPs was the time at which acceleration/deceleration of DNA 309 methylation gain/ loss rate occurred or the time at which a constant loss/ gain changed to a 310 constant gain/loss in methylation, respectably. In all, we identified a total of 5175 ESPs, of 311 which 5113 were present in men and 4067 for women. Most were common for both sexes 312 (supplementary file 2). 313

ESP patterns

DNA methylation trends with ESPs over the age range of 20 to 80 years appeared at several 316 different patterns. First, the overall trend of methylation change either rose or declined with 317 age (green arrows in the positive and negative overall trends in figure 5A). The overall trend 318 in the fraction of methylation for each of these CpGs followed one of five sub-SP patterns, 319 based on the relative relation between the first and second slopes of methylation change rate, 320 before and after the ESP period (figure 5A). There were more ESPs with an overall positive 321 methylation than negative methylation trend, especially in men. Pattern III, characterized by 322 a decrease in methylation up to a certain age followed by an increase in methylation from the 323 age period of ESP onwards, was the most dominant ESP pattern for both men and women, in 324

both overall trends (2465 and 1290 for positive and negative overall trends, respectively out325of 5113 men ESPs and 2168 and 1676 for positive and negative overall trends, respectively,326out of 4067 women ESPs). A sizable number of 1002 ESPs, showed acceleration in DNA327methylation increase rate with age (pattern V), and this was seen exclusively in men.328

329

Figure 5: (A) a schematic view of the possible methylation SP patterns with age, for positive 330
(+) and negative (-) overall trends (OA). Shown is the frequency of the different SP patterns 331
in men (blue) (B) and women (orange) (C). SP CpG sites, for both positive and negative 332
overall trends (green arrows in A), where 100% is the total SP CpG sites for each gender. 333

There was a relative even distribution of the mean beta value of the CpG probes with ESPs 334 between 0.3 to 1, in CpGs with both negative and positive overall slop, for both men and 335

women (supplementary file 1, figure S2). This is in complete contrast to a typical beta value
distribution of the total 450K probes presenting CpGs in which most of the probes have either
a beta value close to 0.2 or to 0.9 (28). This means that compared to the total CpGs population,
a higher fraction ESPs have beta values around 0.5, which may imply a more dynamic
behavior between the methylated and de- methylated state. It is also possible that more ESPs
are mapped to imprinted genes. None of the CpGs resided on the X chromosome and hence,
the higher beta values in probes with ESP are not due to x- inactivation.

The age at which the epigenetic waves occur: relation to sex

343

Each ESP occurs at a definable age. Figure 6 demonstrates the frequencies of SP ages for all 344 ESPs, separately for men and women (5113 and 4067 ESPs for men and women, respectively). 345 The earliest and smallest (n=115, 98; M/F, respectively) wave of ESPs lays between the ages 346 of 30 to 33 years for both genders. A second wave, which includes several hundred ESPs 347 (n=765, 445; M/F, respectively) is seen between the ages of 45-51 years and 42-48 years for 348 men and women, respectively. This ESP age period for women begins slightly earlier than 349 that of men. Finally, the largest and dominant wave of SPs is discernible between the ages of 350 54- 62 years and 60- 69 years in men and women (n=4234, 3524; M/F respectively), 351 respectively. Hence, most SP tend to appear later in women than in men. Indeed, 2 out of the 352 3 waves, and collectively, the vast majority of ESPs take place ~six years and end ~seven 353 years later in women compared to men). 354

Figure 6:Sexual dimorphism in DNA methylation switch points as a function of age: Bimodal356sex related distribution. The amount of CpGs with a switch point at a specific age, at 1 year357intervals.358

355

359

Most SP CpG are common for women and men

Figure 7A is a Vann diagram showing that most ESPs are common for men and women 360 (77.4%) while 21.4% ESPs are unique for men and only 1.5% are unique for women. We next 361 constructed a Vann diagram for the 2,813 genes mapped to the ESPs (Figure 7B). In parallel 362 to the ESPs, most genes with ESPs (81.4%) are common for men and women, 17.7% are 363 unique for men and 0.9% are unique for women. This may imply that the aging process of 364 men and women is mostly linked to similar biological pathways, with a clear difference in the 365 age of onset. The full list of 5175 ESPs, their beta values, overall trends, first and second 366 slopes (before and after the ESP period), age at the specific ESP, their mapped genes and their 367 location in relation to their related gene, is listed in supplementary file S2. Since more than 368 one CpG could be mapped for the same gene and since some CpGs were not mapped to a 369 specific gene, the number of genes with ESPs is smaller than that of SP CpG sites. 370

~	_	
з	1	1
-		-

383

384

ESP gene enriched for defined biological pathways

To examine the potential links of genes with ESP to aging, we conducted biological pathways 385 enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 386 database. Fifty-nine pathways were enriched from the ESP gene list with a Benjamini 387 threshold below 0.05 and a fold enrichment of around 2 (Supplementary file 2, Table S4). 388 These pathways were predominantly related to the endocrine system (23%), cancer (13%), 389 neurological communication (10%), cardiovascular system, immune system, cellular focal 390 adhesions and additional pathways that serve multiple biological functions. Table 1 presents 391 a sample of 9 pathways with prominent information regarding their relation to aging. The 392

complete list of age-related pathways which involve genes with ESPs, with the associated ESP	393
genes for each pathway can be found in Supplementary file 2, Table S4.	394
Table 1: Age related significantly enriched Kyoto Encyclopedia of Genes and Genomes	395

Table 1: Age related significantly enriched Kyoto Encyclopedia of Genes and Genomes

396

(KEGG) biological pathways in the SP genes list

	# of	Fold		
Pathway	Genes	Enr*	Benjamini	Age related changes
hsa04261: Adrenergic signaling in cardiomyocytes hsa04360: Axon guidance hsa04713:	47 52	2.3	1.5E-05 2.3E-05	Decline in heart performance and myocardial remodeling ability; decrease in cardiomyocytes survival ability, which involves reduced response to adrenergic signaling Dysregulation of axonal mRNA localization and local protein translation
Circadian entrainment	32	2.4	1.3E-04	Increasingly dysregulated with age; disruption of circadian entrainment accelerates aging
hsa04725: Cholinergic synapse	34	2.2	3.2E-04	Cholinergic synapse function declines in the brain and neuromuscular junction.
hsa04611: Platelet activation	36	2.1	3.6E-04	Increases with age→ increased cardiovascular thromboembolic clinical and subclinical events; noncanonical platelet effects accelerate neurological diseases including Alzheimer's disease, possibly by increased secretion of beta- amyloid.
hsa04911: Insulin secretion	27	2.3	1.0E-03	Aging beta cells display lower insulin secretory capacity in response to cellular and circulating cues

hsa04915: Estrogen signaling pathway	36	1.9	2.8E-03	Beside traditional tissue targets for estrogens (bone and cardiovascular system), decline in estrogen activity unfavorably affect the preservation of brain connectivity, synapse structure and function
hsa04930: Type II diabetes mellitus	15	2.4	1.9E-02	Aging is modulated by metabolic dysregulation of carbohydrate, fat and protein metabolism, overlapping with or culminating type 2 diabetes
hsa04211: Longevity regulating pathway	22	1.8	4.4E-02	Normal insulin response, caloric restriction, maintenance of autophagic flow and sufficient mitochondrial biogenesis and controlling inflammation and oxidative stress, improve survival and longevity and retard aging

*Fold enrichment; # = number

ESP Genes known to be associated with aging

We next searched for recognized associations between aging or longevity with ESP genes. 399 We extracted ESP genes from known aging- related genes, which were derived from the 400 GenAge, GenDR, LongevityMap and CellAge databases compiled in The Human Ageing 401 Genomic Resources (HAGR) (33). Of these databases, we identified 149 genes with ESP (for 402 the full list see supplementary file S3, Table S5): 76 genes were from the GenAge, 37 from 403 CellAge, 33 from LongevityMap and 28 from GenDR. A number of genes appeared in more 404 than one database. Hence, 5.3% of all ESP genes were related to aging, not significantly 405 different from the fraction (4.9%) of ageing-related genes derived from these databases (973 406 genes) out of the total number of genes in the human genome (19,969 genes). While not 407 enriched, then, the list of aging/longevity related genes with ESPs includes a number of genes 408 whose relation to aging is of interest, which are compiled in Table 2. Among the multiple 409

397

genes with ESPs bearing a particularly significant impact on aging, some, such as ADCY5, 410 APOB, adiponectin, FOXO3, IGF1R, mTORC2, and TXNIP are amongst the most 411 extensively studied in this contest. The overall methylation trend with age, the mean β value 412 and the ESP age of the prominent age- related genes in table 2 are presented for men. The full 413 list of 149 ESP genes linked to aging and longevity with parameters for both genders is 414 provided in tables S5-S7, supplementary file S3. The tables in the supplementary file includes, 415 apart from the parameters presented in table 2, the ESP pattern for each gene and the delta 416 between the first and second calculated slopes (before and after the ESP period). 417

Table 2: Prominent aging and longevity related genes associated with SP CpG sites418

bioRxi	vpreprime giblesttp (which was not	s://doi.org/10.1101/2022.10.02.510495; this v certified by peer review) is the author/funder	version posted Oct . All rights reserve	obe <mark>US,202</mark> 2. 1 d. No reuse all	het of withou	t holder fo t per egissi	r this preprir on. SP
	gene	SP- Aging genes	probe	RefGene	slope	0	
	Symbol			Group	trend	р	age
	ADCY5	Adenylate Cyclase 5	cg25661931	1stExon	+	0.97	61
		Adiponectin, C1O And Collagen					
	ADIPOQ	Domain Containing	cg10681525	Body	+	0.71	55
		A dranocentor Alake 1D	00111685	Dody		0.69	64
	ADKAID	Adrenoceptor Alpha 1B	cg09444085	Бойу	-	0.08	04
		Advanced Glycosylation End-	cg10996463	Body	-	0.87	43
	AGER	Product Specific Receptor	cg11105830	Body	+	0.81	45
			cg18139800	Body	+	0.92	58
		Arachidonate 15-Lipoxygenase	15700067			0.04	~~
	ALUX15B	Туре В	cg15/9926/	5'UTK	-	0.34	22
			cg13287979	Body	+	0.83	55
	APOB	Apolipoprotein B	cg03350299	TSS200	+	0.43	56
			cg25071744	TSS200	+	0.52	57
			cg23949611	Body	-	0.83	59
			01706429	TSS1500		0.42	55
	ATG7	Autophagy Related 7	cg01796438	1551500	+	0.42	55
			cg11277834	5'UTR	+	0.69	61
	BCL2	BCL2 Apoptosis Regulator	cg08223235	Body	+	0.31	57
	BNIP3	BCL2 Interacting Protein 3	cg15390444	Body	+	0.69	55
	CLDN1	Claudin 1	cg03601836	Body	-	0.87	67
	CREBBP	CREB Binding Protein	cg04141008	Body	+	0.72	55
·	CSNK1E	Casein Kinase 1 Epsilon	cg22494725	Body	-	0.63	65
	DUSP1	Dual Specificity Phosphatase 1	cg12333707	TSS1500	+	0.50	60
·			cg05246100	Body	-	0.72	59
	EGFR	Epidermal Growth Factor	cg16488565	Body	+	0 55	57
		Receptor	~510700303	Douy		0.55	57
			cg16751451	TSS1500	+	0.51	60

	ERCC Excision Repair 1,					
ERCC1	Endonuclease Non-Catalytic	cg23347323	3'UTR	+	0.73	55
	Subunit					
ESR1	Estrogen Receptor 1	cg03037684	3'UTR	-	0.61	58
	ETS Proto-Oncogene 1	cg01900413	Body	+	0.25	62
ETS1	Transcription Factor	cg25068347	Body	+	0.77	66
		cg21695395	Body	+	0.60	67
ETS2	ETS Proto-Oncogene 2,	cg15892280	5'UTR	_	0.43	55
	Transcription Factor					
FOXO3	Forkhead Box O3	cg08792630	Body	+	0.37	63
	Histone Deacetylase 4	cg14653043	Body	+	0.93	48
		cg24401044	Body	-	0.97	51
		cg01771737	Body	-	0.79	52
HDAC4		cg04438064	Body	-	0.49	53
		cg05758467	Body	+	0.45	57
		cg15002163	Body	+	0.61	61
		cg11550064	Body	+	0.61	62
	Homeodomain Interacting	cg03520802	Body	-	0.54	53
HIPK2	Protein Kinase 2	cg00995324	Body	+	0.92	61
		cg23646343	Body	+	0.25	68
НК3	Hexokinase 3	cg19791262	TSS1500	+	0.73	51
		cg14709481	5'UTR	+	0.68	56
IGF1R	Insulin Like Growth Factor 1	cg08920032	Body	-	0.49	58
	Receptor					
IGF2R	Insulin Like Growth Factor 2	cg21774926	TSS1500	+	0.37	59
	Receptor					

IGFBP2	Insulin Like Growth Factor	cg20366479	Body	+	0.56	44
101 01 2	Binding Protein 2	0520300473	Dody	I	0.50	
INSR	Insulin Receptor	cg23075968	Body	+	0.39	61
MGST1	Microsomal Glutathione S-	cg22494907	5'UTR	-	0.91	61
	Transferase 1					
MTOR	Mechanistic Target Of	cg10315903	TSS1500	+	0.65	62
	Rapamycin Kinase					
		cg13146040	5'UTR	+	0.88	46
		cg03821418	Body	+	0.54	52
		cg07241090	Body	+	0.35	56
NCOR2	Nuclear Receptor Corepressor 2	cg22820108	5'UTR	-	0.40	57
		cg17825194	Body	-	0.34	57
		cg22700848	5'UTR	+	0.38	58
		cg17187521	5'UTR	+	0.40	60
		cg17387577	Body	+	0.33	69
NEIL1	Nei Like DNA Glycosylase 1	cg02426940	Body	+	0.82	56
NEK6	NIMA Related Kinase 6	cg13958199	TSS1500	+	0.61	53
		cg14082739	5'UTR	+	0.84	49
NFE2L1	NFE2 Like BZIP Transcription	cg27568306	Body	+	0.91	53
	Factor 1					
NGF	Nerve Growth Factor	cg17750109	5'UTR	-	0.80	49
		cg02987481	TSS1500	+	0.43	59
NOS1	Nitric Oxide Synthase 1	cg21006686	TSS1500	+	0.70	57
		cg02500231	5'UTR	+	0.25	71
NOS3	Nitric Oxide Synthase 3	cg00571021	Body	-	0.00	0
NOTCH3	Notch Receptor 3	cg08529654	Body	+	0.41	60
PAX4	Paired Box 4	cg11975652	3'UTR	+	0.68	49

	Phosphatidylinositol-4,5-	cg23251761	5'UTR	-	0.73	49
PIK3CD	Bisphosphate 3-Kinase Catalytic Subunit Delta	cg19267205	Body	+	0.41	56
SLC6A6	Solute Carrier Family 6 Member	cg07573937	5'UTR	-	0.51	31
SLC9A3R2	SLC9A3 Regulator 2	cg09462956	Body	+	0.56	56
TNFSF13	TNF Superfamily Member 13	cg13358186	5'UTR	-	0.00	0
TP53	Tumor Protein P53	cg07760161	5'UTR	+	0.67	61
TXNIP	Thioredoxin Interacting Protein	cg19389852	1stExon	+	0.46	60
VWF	Transmembrane Protein 270	cg09117673	TSS200	-	0.79	55
WT1	WW And C2 Domain Containing 1	cg15946571	Body	+	0.94	59

419

420

Key epigenetic regulators are ESP Genes

Interestingly, we found that key regulators of DNA methylation have ESPs at related CpG 421 sites (Table 3, and supplementary file 3, Table S6), of which the most prominent ones are 422 listed in Table 3. The earliest mean age of appearance of ESP is seen for TRDMT1 and 423 DNMT1 (47, 49 years, respectively), and the latest age of EPS is notable for TET2 (71 years). 424

Table 3: Key SP genes involved in de/methylation processes

SP- Epigenetic gene Symbol	SP- Epigenetic gene name	Probe	UCSC RefGene Group	Over all slope	Mean β	SP age
TET3	Tet Methylcytosine Dioxygenase 3	cg15827185	Body	+	0.90	60

TET2	Tet Methylcytosine Dioxygenase 2	cg12306086	5'UTR	+	0.36	71
DNMT1	DNA Methyltransferase 1	cg23662947	Body	+	0.97	49
DNMT3B	DNA Methyltransferase 3 Beta	cg09835408	5'UTR	+	0.35	56
TRDMT1	TRNA Aspartic Acid Methyltransferase 1	cg23661704	Body	+	0.98	47

426

427

Estrogenic and androgenic SP genes

Because most EPS begin to cluster during the fifth decade of life, in which women experience 428 menopausal transition and hormonal changes begin to afflict men as well, and since the 429 findings in Table 1 show that genes with ESPs are enriched with genes which participate in 430 the estrogen signaling pathway, we queried our ESP gene list regarding the presence and 431 potential enrichment with estrogen and androgen related genes. We found 24 genes that are 432 involved in estrogenic signalling pathway: 14 (of 2813 SP genes) are specifically involved in 433 estrogen receptor alpha (ESR1) signalling. The number of genes related estrogen receptor 434 alpha signalling in the entire 19,969 human gene population, is 55. We calculated an 435 enrichment Chi Square P value of 3.2e-08 and a binomial probability of 0.02 for randomly 436 getting 14 or more genes related to estrogen receptor alpha when taking a sample of 2813 437 genes. This indicates that there is an enrichment of estrogen receptor alpha- related signalling 438 genes in our ESP list with 1.8 fold enrichment. Additionally, we found 28 genes linked to 439 androgen related pathways. 440

441

442

Discussion

444

In the present study we set out to assess the relation between age and DNA methylation level 445 in over 2000 subjects collected from 24 different cohorts, whose age spanned from 20 to 80 446 years. On the average, more than 80% of the CpG sites screened by the Illumina 450K 447 platform which then passed our internal data validation process were found to be stationary 448 over the years. Stationarity does not exclude the possibility of significant intra-individual 449 changes over the years in stationary probes, as the analyzed data is cross-sectional and not 450 based on longitudinal analysis with repeated measurement of methylation of the same probes 451 in the same subjects. Rather, our observations suggest that the majority of the probes included 452 in the 450 k Illumina platform show a stable average methylation fraction between the ages 453 of 20 to 80 years in apparently healthy subjects collected from heterogenous GSE sources. 454

About one fifth of the validated CpG sites probed in the 450K Illumina platform 455 (69275/341247) were not stationary: they underwent, on the average, consistent changes in 456 methylation level over time that can be described as linear/close to linear, curvilinear or 457 displaying changes in the standard deviation of the mean beta values (methylation fraction). 458 Among the latter group, 5175 non-stationary CpG sites changed linearly or in a manner close 459 to linearity over a certain age span, but then changed course at/around certain age zones, thus 460 displaying a switch point in their trend over the ages of 20-80 years, which we termed an 461 epigenetic switch point (EPS). 462

In general, switch points detected in the non-stationary probes can be characterized as follows: 463 1) they are limited to a fraction of the known genes, 2813 of the ~20,000 human genes. 2) 464 they appear in clusters as three apparent age-related waves: a small wave afflicting ~100 CpG 465 sites as of the age of 30 to the age of ~34; a second wave between the ages of 40 to 50 years, 466 composed of ~750 CpG sites which ends 3-4 years earlier in men; and a large wave, including 467

~4500CpG sites, between the ages of 50-68 years. 3) their distribution across each of waves 468 grossly follows a normal Gaussian pattern. 4)~80% of the CpG sites with switch points are 469 shared by women and men; 5) still, there is sexual dimorphism in the distribution of the switch 470 points, such that most of them emerge, peak, decline and vanish earlier in men then in women. 471 Further, in males ~20% of the ESPs are "male-only" CpGs, compared to only 1.5% "female 472 only" ESPs. Concordantly, switch points occur in less CpG sites and genes in women than 473 in men. Lastly, only men show ESPs with acceleration of an increasing trend in the fraction 474 methylation beyond the ESP-specific age (pattern V, Figure 5). 475

The clustering of ESPs in defined CpG sites of a limited number of genes, at defined age zones476with sexual dimorphism suggests some form of organization rather than a random occurrence.477Random switch points would have displayed a spotty pattern spread all over the platform's478probe population, with no predilection for CpG sites, genes, age or sex parameters.479

What drives the appearance of EPS clusters in successive waves between the ages of 40-70 480 years? Could these waves be somehow related to aging-related processes, even though they 481 begin to decline rather sharply as of the late fifties in men and early sixties in women and then 482 entirely fade just a few years later and do not continue to appear in the eight's decade of life? 483 Certainly, our data cannot provide a fact-based elucidation of this question. However, one 484 cannot escape the consideration of several physiological and clinical changes that precede, 485 succeed or coincide with these waves in contemporary human life: hormonal and metabolic 486 changes and the emergence of cardiovascular morbidities tend to cluster as of the age of 40. 487 In females, menopause does not normally take place until 5 years following the initiation of 488 the second wave, but the menopausal transition is a gradual process lasting 7 up to14 years, 489 most of which take place before the actual cessation of menses (40). Notably, the list of genes 490 with ESP is enriched with ESR1 (estrogen receptor α)-related genes Further, acceleration in 491 metabolic and cardiovascular disease in women actually takes place in post-menopausal
women (41,42). Interestingly, ESP in estrogen/estrogen action related genes are nearly all
shared by men and women (supplementary file S3, Table S7).

In men, testosterone declines by 0.8% annually as of the age of (43). The decline is much 495 steeper when health status undergoes unfavorable but common impairments (44) with the 496 appearance of overweight, obesity, diabetes and hypertension and cardiovascular events, all 497 of which are on the rise in midlife, particularly after the age of 40 years (40-47). The latter 498 conditions become significant players in females' health, on the average, about a decade later. 499 Table 1 lists some of the biological pathways that are most strongly enriched with ESPs, in 500 terms of statistical strength (Benjamini's test with p=0.04-0.00015) and involve processes 501 which are inseparable from the same health trends observed in and as of the fifth decade of 502 life. As examples, we find enrichment with CpG sites with SP in genes linked to adrenergic 503 signaling (hypertension, cardiovascular disease), circadian rhythmicity, cholinergic synapse 504 (obesity, aging, metabolic syndrome), platelet activation (cardiovascular events), insulin 505 secretion (overweight, obesity, diabetes), type II diabetes mellitus and estrogen signaling 506 (menopausal transition). 507

A close look at the list of genes showing ESPs discloses several examples CpG's/genes/groups 508 which are of interest vis-à-vis switch points and /or aging. Histone deacetylase 4 (HDAC4) 509 has 7 CpG sites with ESP (Table 2) and interestingly, estrogen act to retain HDAC4 in the 510 nucleus and thus inhibit hypertrophic gene expression and cardiac hypertrophy (48), a 511 common phenotypic phenomenon of heart aging (49). cg15799267, located on the enhancer 512 of arachidonate 15-lipoxygenase B, an enzyme implicated in atherosclerosis (50,51), has an 513 ESP at the age of 45 in women and 54 in men, after which it is increasingly demethylated with 514 age (Table 5S, supplement file 3S). 515 The presence of ESPs on some of the aging/longevity genes is also intriguing. For example, 516 KO of adenylate cyclase 5 (ADCY5), which involves many G-protein coupled receptor 517 signaling, such as the beta-adrenergic receptor signaling, increased the median life span of 518 mice by 30% (52). Not only was lifespan increased, but resistance to cardiac stress rose 519 whereas age- induced cardiomyopathy and reduction in bone density were lessened (52-54). 520 The co-presence of ESPs in the EGFR (epidermal factor receptor), insulin receptor, IGF1R, 521 IG2R, is also notable, as these are network players at the interface of growth control (including 522 cancer growth) and vascular aging with metabolic carbohydrate, fat and protein homeostasis, 523 where both excess activity or improper activation can modulate metabolic disease, bridge 524 insulin resistance to cancer and thus affect survival (55–58). Disruption of the insulin/insulin-525 like growth factor 1 signaling (IIS) pathway in Caenorhabditis elegans was found to double 526 its lifespan (59). At the organ level, IGF1R KO in mice cardiomyocytes attenuates cardiac 527 hypertrophy associated with cardiac aging (60) whereas constitutive activation of IGF1R in 528 vascular smooth muscle cells of old mice accelerates the development of atherosclerosis (61). 529 The IR/IGF-1 signaling cascade also negatively regulates Forkhead Box O3 (FOXO3), a 530 transcription factor with a strong positive impact on aging and age-related phenotypes, 531 operating through enhancement of cellular ability to sustain stress (62). Concordant with this 532 role of FOXO3, natural SNPs in the FOXO3 gene were associated with increased longevity 533 of American men of Japanese ancestry aged ≥ 95 years (61,62). 534

The Mechanistic Target of Rapamycin Kinase (mTOR) is tightly linked to aging biology (65– 68). It functions as an intracellular energy sensor and a central regulator of growth, proliferation, metabolism, survival, protein synthesis, apoptosis autophagy and transcription (69). Impressively, rapamycin, an inhibitor of the mTOR complex 1 (mTORC1) has thus far increased lifespan in all model organisms studied (65). The protein complex mTOR2 promotes the activation of insulin receptors and insulin-like growth factor 1 receptors and as 540 such, disruption of mTORC2 leads to glucose intolerance, diabetes, lower activity level and
immunosuppression (66,70). Its activity is inhibited by insulin/insulin-like growth factor
(IGF-1) signaling (IIS) cascade stimulation. Finally, differential methylation in CpG sites
related to Thioredoxin Interacting Protein (TXNIP), shown here to have ESPs, were found in
544
Type 2 Diabetes population, commonly, associated with aging (71–73).

Table 3 highlights 5 ESPs on genes encoding enzymes which directly affect DNA 546 methylation. DNMT1, DNMT3B are classical writer enzymes responsible for DNA 547 methylations. DNMT1, catalyzes the transfer of a methyl group to a cytosine nucleotide and 548 is mainly responsible for maintaining DNA methylation, which ensures the fidelity of this 549 epigenetic patterns across cell divisions. In contrast, DNA Methyltransferase 3 Beta 550 (DNMT3B) functions in *de novo* methylation. Hence, a change at the ESP for DNMT3B at a 551 mean age of 56 may be consequential. TRDMT1, tRNA aspartic acid methyltransferase 1, 552 also known as DNMT2, can also act as a writer, but is importantly linked to resistance to 553 stress, including oxidative stress, inflammation, salt stress, and cellular senescence (74,75). 554 TET enzymes generally function as 5-mC erasers by the conversion of 5-mC into 5-hmC, an 555 intermediary metabolite that releases the presumed effect of the methylated CpG site. Notably, 556 2 of the three known TET enzymes, TET3 and TET2 are shown to possess ESP age of 71 and 557 60 respectively. Hence, some ESPs identified in the DNA vears. can be 558 methylation/demethylation machinery itself, preceding or coinciding with the overall ESPs 559 waves (Table 3). 560

Because these are just few of the >2800 genes with SP, and since ESPs waves encompass a 561 distinct, but broad age ranges, a detailed analysis of the of potential specific potential links 562 between the unfolding clinical unfolding of physiological processes and common diseases in 563 evolution and the epigenetic waves and their individual components comprises a formidable 564 challenge for future work . 565

At the present phase, the conceptualization of the ESPs waves as a potentially significant 566 phenomenon, requires consideration of the fact that whereas aging itself, including epigenetic 567 aging (5-7,14) goes on continuously with advancing years, the ESPs waves apparently begin 568 to wane after the age of \sim 58 in men and \sim 63 in women and then completely disappear within 569 the following 5-8 years. This transient pattern of epigenetic waves might indicate that the CpG 570 signals comprising the ESP waves are mechanistically involved in or at the least echo some 571 biological resetting that permits aging to advance, but may also reflect compensatory pro-572 longevity biosystems activated by signals of aging and senescence. It is also possible, 573 particularly since we analyze age by cross-sectional and not longitudinal tools, that the waning 574 of the ESPs reflects a Darwinian selection, the survival of the fittest: subjects who remained 575 alive to their 8th decade may have not experienced the switch point waves that afflicted non-576 survivors, thus leaving the 8th decade of life free of ESP waves. While potentially testable, 577 these hypotheses cannot be addressed without in depth longitudinal studies . 578

In conclusion, this is the first report of epigenetic aging waves in the form of clustering of 579 EPS in a fraction of the genes comprising the human genome, in an age and sex specific 580 manner. The main weakness of this report is that it is based on cross sectional analysis of mean 581 methylation level and not on longitudinal observations in the same individuals and therefore 582 does not deal with intra-individual changes in DNA methylation. This novel phenomenon, 583 however, which appears well organized and is linked to several transitional periods in human 584 life, lays the foundations to future quests to understand its underlying triggers as well as health 585 and aging-related consequences. 586

587

588

589

List of abbreviations

ESP: epigenetic switch points

HDAC4: Histone deacetylase 4	590
mTOR: Mechanistic Target of Rapamycin Kinase	591
FOXO3: Forkhead Box O3	592
TXNIP: Thioredoxin Interacting Protein	593
ADCY5: adenylate cyclase 5	594
IGFR: insulin growth factor receptor	595
IGF: insulin growth factor	596
IIS: insulin/insulin-like growth factor (IGF-1) signaling	597
DNMT1: DNA methyl transferase 1	598
TRDMT1: tRNA aspartic acid methyltransferase 1, also known as DNMT2,	599
DNMT3B: Methyltransferase 3 Beta	600
TET1/2: Ten-Eleven Translocation 1/2	601
Ethics approval and consent to participate	602
Not applicable	603
Consent for publication	604
Not applicable	605
Availability of data and materials	606
The GEO number of the data sets analyzed during the current study are listed	607
in Additional file 1, table S1.	608
Competing interests	609

The authors declare that they have no competing interests	610
Funding	611
This research was funded by Sami and Tova Sagol	612
Author contribution statement	613
N.S. initiated the project. N.S., E.S., T.K and T.S. designed the study. T.K, E.S, T.S, Y.M,	614
and G.S have selected and filtered the data source. T.K and E.S did all the mathematical and	615
statistical calculations. Y.E and M.P gave useful reviews and comments on the paper. N.S,	616
E.S and T.S. wrote the manuscript. All authors gave approval to the final version of the	617
manuscript.	618
	619
Acknowledgment	620
We would like to thank Sami and Tova Sagol for their generous donation to the Sagol	621
Epigenetic center, which made this study possible.	622
	623
Supplementary material:	624
Supplementary file 1: table S1: The GEO number of the data sets analyzed during the current	625
study, table S2: the 19 parameters used in the decision tree model, figure S1: Age distribution	626
of the sample dataset by gender, figure S2: Distribution of β values in type III ESPs.	627
Supplementary file 2: Table 3: The complete list of 5175 ESP, Table 4: The complete list of	628
age-related pathways which involve genes with ESPs.	629
Supplementary file 3: Table 5: The complete list of 149 ESP genes which are aging/ longevity	630
genes. Table 6: DNA methylation process- related ESP. Table 7: Estrogen related ESP. Table	631
8: Androgen related ESP.	632

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.510495; this version posted October 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

<u>Refe</u>	erences:	633
1.	Mays-Hoopes LL. DNA Methylation in Aging and Cancer. J Gerontol [Internet].	634
	1989 Nov 1 [cited 2022 Sep 29];44(6):35-6. Available from:	635
	https://academic.oup.com/geronj/article/44/6/35/564452	636
2.	Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging.	637
	2015 Dec 1 [cited 2021 Oct 4];14(6):924–32. Available from:	638
	https://pubmed.ncbi.nlm.nih.gov/25913071/	639
3.	Drinkwater RD, Blake TJ, Morley AA, Turner DR. Human lymphocytes aged in vivo	640
	have reduced levels of methylation in transcriptionally active and inactive DNA.	641
	Mutat Res [Internet]. 1989 [cited 2022 Sep 30];219(1):29-37. Available from:	642
	https://pubmed.ncbi.nlm.nih.gov/2911269/	643
4.	Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013	644
	Oct 21;14(10):R115.	645
5.	Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, Eijk K van, et al. Aging	646
	effects on DNA methylation modules in human brain and blood tissue. Genome Biol	647
	[Internet]. 2012 [cited 2022 Sep 30];13(10):R97. Available from:	648
	https://www.academia.edu/11469305/Aging_effects_on_DNA_methylation_modules	649
	_in_human_brain_and_blood_tissue	650
6.	Johansson Å, Enroth S, Gyllensten U. Continuous Aging of the Human DNA	651
	Methylome Throughout the Human Lifespan. PLoS One [Internet]. 2013 Jun 27	652
	[cited 2022 Sep 29];8(6):e67378. Available from:	653
	https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067378	654
7.	Florath I, Butterbach K, Müller H, Bewerunge-hudler M, Brenner H. Cross-sectional	655
	and longitudinal changes in DNA methylation with age: an epigenome-wide analysis	656

	revealing over 60 novel age-associated CpG sites. Hum Mol Genet [Internet]. 2014	657
	Mar [cited 2022 Sep 29];23(5):1186–201. Available from:	658
	https://pubmed.ncbi.nlm.nih.gov/24163245/	659
8.	Illingworth RS, Bird AP. CpG islands'a rough guide'. FEBS Lett [Internet]. 2009	660
	Jun 5 [cited 2022 Sep 29];583(11):1713–20. Available from:	661
	https://pubmed.ncbi.nlm.nih.gov/19376112/	662
9.	Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a	663
	case of epigenetic thrift? Hum Mol Genet [Internet]. 2013 Oct [cited 2022 Sep	664
	29];22(R1). Available from: https://pubmed.ncbi.nlm.nih.gov/23918660/	665
10.	Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the	666
	human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U	667
	S A [Internet]. 2006 Jan 31 [cited 2022 Sep 29];103(5):1412–7. Available from:	668
	https://www.pnas.org/doi/abs/10.1073/pnas.0510310103	669
11.	Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide	670
11.	Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell	670 671
11.	Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from:	670 671 672
11.	Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/	670 671 672 673
11.	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/ Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can 	670 671 672 673 674
 11. 12. 	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/ Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 	670 671 672 673 674 675
11.	Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/ Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol [Internet]. 2014 Feb 3 [cited 2022 Sep 29];15(2):1–12. Available from:	670 671 672 673 674 675 676
11.	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/ Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol [Internet]. 2014 Feb 3 [cited 2022 Sep 29];15(2):1–12. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r24 	 670 671 672 673 674 675 676 677
 11. 12. 13. 	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/ Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol [Internet]. 2014 Feb 3 [cited 2022 Sep 29];15(2):1–12. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r24 Mcclay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, et al. A methylome- 	 670 671 672 673 674 675 676 677 678
 11. 12. 13. 	 Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda SV, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell [Internet]. 2013 Jan 24 [cited 2021 Oct 4];49(2):359–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23177740/ Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol [Internet]. 2014 Feb 3 [cited 2022 Sep 29];15(2):1–12. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r24 Mcclay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, et al. A methylome- wide study of aging using massively parallel sequencing of the methyl-CpG-enriched 	 670 671 672 673 674 675 676 677 678 679

	Mar [cited 2022 Sep 29];23(5):1175–85. Available from:	681
	https://pubmed.ncbi.nlm.nih.gov/24135035/	682
14.	Shahal T, Segev E, Konstantinovsky T, Marcus Y, Shefer G, Pasmanik-Chor M, et al.	683
	Deconvolution of the epigenetic age discloses distinct inter-personal variability in	684
	epigenetic aging patterns. Epigenetics and Chromatin [Internet]. 2022 Dec 1 [cited	685
	2022 Sep 29];15(1):1–12. Available from:	686
	https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-022-	687
	00441-у	688
15.	Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al.	689
	DNA methylation-based measures of biological age: Meta-analysis predicting time to	690
	death. Aging (Albany NY) [Internet]. 2016 [cited 2022 Sep 29];8(9):1844-65.	691
	Available from: https://pubmed.ncbi.nlm.nih.gov/27690265/	692
16.	Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An	693
	epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome	694
	Biol [Internet]. 2016 Aug 11 [cited 2021 Oct 4];17(1):171. Available from:	695
	https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1030-0	696
17.	Zhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, Schöttker B, et al. DNA	697
	methylation signatures in peripheral blood strongly predict all-cause mortality. Nat	698
	Commun. 2017;8:14617.	699
18.	Jain P, Binder AM, Chen B, Parada H, Gallo LC, Alcaraz J, et al. Analysis of	700
	Epigenetic Age Acceleration and Healthy Longevity Among Older US Women.	701
	JAMA Netw Open [Internet]. 2022 Jul 1 [cited 2022 Sep 29];5(7):e2223285-	702
	e2223285. Available from:	703
	https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2794706	704

19.	Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA	705
	methylation age of blood predicts future onset of lung cancer in the women's health	706
	initiative. Aging (Albany NY) [Internet]. 2015 [cited 2022 Sep 29];7(9):690-700.	707
	Available from: https://pubmed.ncbi.nlm.nih.gov/26411804/	708
20.	Ambatipudi S, Horvath S, Perrier F, Cuenin C, Hernandez-Vargas H, Le Calvez-	709
	Kelm F, et al. DNA methylome analysis identifies accelerated epigenetic ageing	710
	associated with postmenopausal breast cancer susceptibility. Eur J Cancer [Internet].	711
	2017 Apr 1 [cited 2022 Sep 29];75:299–307. Available from:	712
	https://pubmed.ncbi.nlm.nih.gov/28259012/	713
21.	Roetker NS, Pankow JS, Bressler J, Morrison AC, Boerwinkle E. Prospective Study	714
	of Epigenetic Age Acceleration and Incidence of Cardiovascular Disease Outcomes in	715
	the ARIC Study (Atherosclerosis Risk in Communities). Circ Genomic Precis Med	716
	[Internet]. 2018 Mar 1 [cited 2022 Sep 29];11(3):e001937. Available from:	717
	https://pubmed.ncbi.nlm.nih.gov/29555670/	718
22.	Snir S, Farrell C, Pellegrini M. Human epigenetic ageing is logarithmic with time	719
	across the entire lifespan. Epigenetics [Internet]. 2019 Sep 2 [cited 2022 Sep	720
	30];14(9):912–26. Available from: https://pubmed.ncbi.nlm.nih.gov/31138013/	721
23.	Rubbi L, Zhang H, Feng J, He C, Kurnia P, Ratan P, et al. The effects of age, sex,	722
	weight, and breed on canid methylomes. Epigenetics [Internet]. 2022 [cited 2022 Sep	723
	30]; Available from: https://pubmed.ncbi.nlm.nih.gov/35502722/	724
24.	Martino DJ, Tulic MK, Gordon L, Hodder M, Richman T, Metcalfe J, et al. Evidence	725
	for age-related and individual-specific changes in DNA methylation profile of	726
	mononuclear cells during early immune development in humans. Epigenetics	727
	[Internet]. 2011 [cited 2022 Sep 29];6(9):1085–94. Available from:	728

	https://pubmed.ncbi.nlm.nih.gov/21814035/	729
25.	Herbstman JB, Wang S, Perera FP, Lederman SA, Vishnevetsky J, Rundle AG, et al.	730
	Predictors and consequences of global DNA methylation in cord blood and at three	731
	years. PLoS One [Internet]. 2013 Sep 4 [cited 2022 Sep 29];8(9). Available from:	732
	https://pubmed.ncbi.nlm.nih.gov/24023780/	733
26.	Han L, Zhang H, Kaushal A, Rezwan FI, Kadalayil L, Karmaus W, et al. Changes in	734
	DNA methylation from pre-to post-adolescence are associated with pubertal	735
	exposures. Clin Epigenetics [Internet]. 2019 Dec 2 [cited 2022 Sep 29];11(1):1-14.	736
	Available from:	737
	https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-019-	738
	0780-4	739
27.	Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK,	740
	et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics [Internet].	741
	2014 Feb 1 [cited 2022 Sep 29];30(3):428–30. Available from:	742
	https://academic.oup.com/bioinformatics/article/30/3/428/228299	743
28.	Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et	744
	al. A beta-mixture quantile normalization method for correcting probe design bias in	745
	Illumina Infinium 450 k DNA methylation data. 2013 Jan 15 [cited 2022 Sep	746
	29];29(2):189–96. Available from:	747
	https://academic.oup.com/bioinformatics/article/29/2/189/204142	748
29.	Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson	749
	HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution.	750
	BMC Bioinformatics [Internet]. 2012 May 8 [cited 2022 Sep 30];13(1):1–16.	751
	Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-	752

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.02.510495; this version posted October 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

30.	Robert B. Cleveland, William S. Cleveland, Jean E. McRae IT. STL: A Seasonal-	754
	Trend Decomposition Procedure Based on Loess - ProQuest [Internet]. Journal of	755
	official statistics. 1990 [cited 2022 Sep 30]. p. 3-73. Available from:	756
	https://www.proquest.com/docview/1266805989?parentSessionId=KCOre8G8D2YY	757
	70EegFfTWWxf7R6R6ipCvz%2Fezt%2Fxa%2BY%3D	758
31.	Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and	759
	interpretation of large-scale molecular data sets. Nucleic Acids Res [Internet]. 2012	760
	Jan [cited 2022 Sep 30];40(Database issue). Available from:	761
	https://pubmed.ncbi.nlm.nih.gov/22080510/	762
32.	Lynch DR, Farmer JM, Balcer LJ, Wilson RB. Friedreich ataxia: Effects of genetic	763
	understanding on clinical evaluation and therapy. Vol. 59, Archives of Neurology.	764
	2002. p. 743–7.	765
33.	Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, et al. Human	766
	Ageing Genomic Resources: new and updated databases. Jan [cited 2022 Sep	767
	20];46(D1). Available from: https://pubmed.ncbi.nlm.nih.gov/29121237/	768
34.	Fernandes M, Wan C, Tacutu R, Barardo D, Rajput A, Wang J, et al. Systematic	769
	analysis of the gerontome reveals links between aging and age-related diseases. 2016	770
	Nov 1 [cited 2022 Sep 29];25(21):4804–18. Available from:	771
	https://pubmed.ncbi.nlm.nih.gov/28175300/	772
35.	De Magalhães JP, Toussaint O. GenAge: A genomic and proteomic network map of	773
	human ageing. FEBS Lett [Internet]. 2004 Jul 30 [cited 2022 Sep 30];571(1-3):243-	774
	7. Available from: https://pubmed.ncbi.nlm.nih.gov/15280050/	775

36.	Plank M, Wuttke D, Van Dam S, Clarke SA, De Magalhães JP. A meta-analysis of	776
	caloric restriction gene expression profiles to infer common signatures and regulatory	777
	mechanisms. Mol Biosyst [Internet]. 2012 Mar [cited 2022 Sep 29];8(4):1339-49.	778
	Available from: https://pubmed.ncbi.nlm.nih.gov/22327899/	779
37.	Wuttke D, Connor R, Vora C, Craig T, Li Y, Wood S, et al. Dissecting the gene	780
	network of dietary restriction to identify evolutionarily conserved pathways and new	781
	functional genes. PLoS Genet [Internet]. 2012 Aug [cited 2022 Sep 29];8(8).	782
	Available from: https://pubmed.ncbi.nlm.nih.gov/22912585/	783
38.	Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, et al. A	784
	multidimensional systems biology analysis of cellular senescence in aging and	785
	disease. Genome Biol [Internet]. 2020 Apr 7 [cited 2022 Sep 30];21(1). Available	786
	from: https://pubmed.ncbi.nlm.nih.gov/32264951/	787
39.	Oliveros, J.C. (2007-2015) Venny. An Interactive Tool for Comparing Lists with	788
	Venn's Diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html.	789
40.	El Khoudary SR, Greendale G, Crawford SL, Avis NE, Brooks MM, Thurston RC, et	790
	al. The menopause transition and women's health at midlife: a progress report from	791
	the Study of Women's Health Across the Nation (SWAN). Menopause [Internet].	792
	2019 Oct 1 [cited 2022 Sep 30];26(10):1213. Available from:	793
	/pmc/articles/PMC6784846/	794
41.	Miller JJ, Heather LC. Cardiometabolic risk factors vary with age differently in	795
	females and males. Nat Cardiovasc Res 2022 19 [Internet]. 2022 Sep 12 [cited 2022	796
	Sep 30];1(9):796–7. Available from: https://www.nature.com/articles/s44161-022-	797
	00130-9	798
42.	Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med	799

	2019 2511 [Internet]. 2019 Nov 7 [cited 2022 Sep 29];25(11):1657-66. Available	800
	from: https://www.nature.com/articles/s41591-019-0643-8	801
43.	Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al.	802
	Age trends in the level of serum testosterone and other hormones in middle-aged	803
	men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol	804
	Metab [Internet]. 2002 [cited 2022 Sep 29];87(2):589–98. Available from:	805
	https://pubmed.ncbi.nlm.nih.gov/11836290/	806
44.	Hildrum B, Mykletun A, Hole T, Midthjell K, Dahl AA. Age-specific prevalence of	807
	the metabolic syndrome defined by the International Diabetes Federation and the	808
	National Cholesterol Education Program: The Norwegian HUNT 2 study. BMC	809
	Public Health [Internet]. 2007 Aug 29 [cited 2022 Sep 29];7(1):1–9. Available from:	810
	https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-7-220	811
45.	Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and	812
	regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:	813
	Results from the International Diabetes Federation Diabetes Atlas, 9th edition.	814
	Diabetes Res Clin Pract [Internet]. 2019 Nov 1 [cited 2022 Sep 29];157. Available	815
	from: https://pubmed.ncbi.nlm.nih.gov/31518657/	816
46.	Meyer MR, Haas E, Barton M. Gender Differences of Cardiovascular Disease.	817
	Hypertension [Internet]. 2006 Jun 1 [cited 2022 Sep 30];47(6):1019–26. Available	818
	from: https://www.ahajournals.org/doi/abs/10.1161/01.HYP.0000223064.62762.0b	819
47.	Tsay YC, Chen CH, Pan WH. Ages at Onset of 5 Cardiometabolic Diseases	820
	Adjusting for Nonsusceptibility: Implications for the Pathogenesis of Metabolic	821
	Syndrome. Am J Epidemiol [Internet]. 2016 Sep 1 [cited 2022 Sep 29];184(5):366-	822
	77. Available from: https://academic.oup.com/aje/article/184/5/366/2388960	823

48.	Pedrama A, Razandi M, Narayanan R, Dalton JT, McKinsey TA, Levin ER. Estrogen	824
	regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell	825
	[Internet]. 2013 Dec 15 [cited 2022 Sep 29];24(24):3805–18. Available from:	826
	https://www.molbiolcell.org/doi/10.1091/mbc.e13-08-0444	827
49.	Sessions AO, Engler AJ. Mechanical Regulation of Cardiac Aging in Model Systems.	828
	Circ Res [Internet]. 2016 May 13 [cited 2022 Sep 29];118(10):1553-62. Available	829
	from: https://pubmed.ncbi.nlm.nih.gov/27174949/	830
50.	Vijil C, Hermansson C, Jeppsson A, Bergström G, Hultén LM. Arachidonate 15-	831
	Lipoxygenase Enzyme Products Increase Platelet Aggregation and Thrombin	832
	Generation. PLoS One [Internet]. 2014 Feb 12 [cited 2022 Sep 29];9(2):e88546.	833
	Available from:	834
	https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088546	835
51.	Gertow K, Nobili E, Folkersen L, Newman JW, Pedersen TL, Ekstrand J, et al. 12-	836
	and 15-lipoxygenases in human carotid atherosclerotic lesions: Associations with	837
	cerebrovascular symptoms. Atherosclerosis. 2011 Apr 1;215(2):411-6.	838
52.	Yan L, Vatner DE, O'Connor JP, Ivessa A, Ge H, Chen W, et al. Type 5 adenylyl	839
	cyclase disruption increases longevity and protects against stress. Cell [Internet].	840
	2007 Jul 27 [cited 2022 Sep 30];130(2):247–58. Available from:	841
	https://pubmed.ncbi.nlm.nih.gov/17662940/	842
53.	Vatner SF, Yan L, Ishikawa Y, Vatner DE, Sadoshima J. Adenylyl cyclase type 5	843
	disruption prolongs longevity and protects the heart against stress. Circ J [Internet].	844
	2009 [cited 2022 Sep 29];73(2):195–200. Available from:	845
	https://pubmed.ncbi.nlm.nih.gov/19106458/	846
54.	Vatner SF, Pachon RE, Vatner DE. Inhibition of adenylyl cyclase type 5 increases	847

	longevity and healthful aging through oxidative stress protection. Oxid Med Cell	848
	Longev [Internet]. 2015 [cited 2022 Sep 29];2015. Available from:	849
	https://pubmed.ncbi.nlm.nih.gov/25945149/	850
55.	Yakar S, Adamo ML. Insulin-like growth factor 1 physiology: lessons from mouse	851
	models. Endocrinol Metab Clin North Am [Internet]. 2012 Jun [cited 2022 Sep	852
	30];41(2):231–47. Available from: https://pubmed.ncbi.nlm.nih.gov/22682628/	853
56.	LeRoith D, Yakar S. Mechanisms of Disease: metabolic effects of growth hormone	854
	and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 2007 33 [Internet].	855
	2007 Mar [cited 2022 Sep 30];3(3):302–10. Available from:	856
	https://www.nature.com/articles/ncpendmet0427	857
57.	Rosenfeld RG. Insulin-like Growth Factors and the Basis of Growth.	858
	https://doi.org/101056/NEJMp038156 [Internet]. 2003 Dec 4 [cited 2022 Sep	859
	30];349(23):2184–6. Available from:	860
	https://www.nejm.org/doi/full/10.1056/NEJMp038156	861
58.	Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, et al. Association of	862
	common genetic variation in the insulin/IGF1 signaling pathway with human	863
	longevity. Aging Cell [Internet]. 2009 [cited 2022 Sep 30];8(4):460-72. Available	864
	from: https://pubmed.ncbi.nlm.nih.gov/19489743/	865
59.	Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives	866
	twice as long as wild type. Nature [Internet]. 1993 [cited 2022 Sep	867
	30];366(6454):461–4. Available from: https://pubmed.ncbi.nlm.nih.gov/8247153/	868
60.	Ock S, Lee WS, Ahn J, Kim HM, Kang H, Kim HS, et al. Deletion of IGF-1	869
	Receptors in Cardiomyocytes Attenuates Cardiac Aging in Male Mice.	870
	Endocrinology [Internet]. 2016 Jan 1 [cited 2022 Sep 30];157(1):336-45. Available	871

	from: https://pubmed.ncbi.nlm.nih.gov/26469138/	872
61.	Li M, Chiu JF, Gagne J, Fukagawa NK. Age-related differences in insulin-like	873
	growth factor-1 receptor signaling regulates Akt/FOXO3a and ERK/Fos pathways in	874
	vascular smooth muscle cells. J Cell Physiol [Internet]. 2008 Nov 1 [cited 2022 Sep	875
	30];217(2):377–87. Available from:	876
	https://onlinelibrary.wiley.com/doi/full/10.1002/jcp.21507	877
62.	Calnan DR, Brunet A. The FoxO code. Oncogene [Internet]. 2008 Apr 7 [cited 2022	878
	Sep 30];27(16):2276-88. Available from: https://pubmed.ncbi.nlm.nih.gov/18391970/	879
63.	Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, et al. FOXO3A genotype	880
	is strongly associated with human longevity. Proc Natl Acad Sci U S A [Internet].	881
	2008 Sep 16 [cited 2022 Sep 30];105(37):13987–92. Available from:	882
	https://www.pnas.org/doi/abs/10.1073/pnas.0801030105	883
64.	Flachsbart F, Caliebe A, Kleindorp R, Blanché H, Von Eller-Eberstein H, Nikolaus S,	884
	et al. Association of FOXO3A variation with human longevity confirmed in German	885
	centenarians. Proc Natl Acad Sci U S A [Internet]. 2009 Feb 2 [cited 2022 Sep	886
	30];106(8):2700. Available from: /pmc/articles/PMC2650329/	887
65.	Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A	888
	Mini-Review. Gerontology [Internet]. 2018 Feb 1 [cited 2022 Sep 29];64(2):127-34.	889
	Available from: https://pubmed.ncbi.nlm.nih.gov/29190625/	890
66.	Arriola Apelo SI, Lamming DW. Rapamycin: An InhibiTOR of Aging Emerges From	891
	the Soil of Easter Island. J Gerontol A Biol Sci Med Sci [Internet]. 2016 Jul 1 [cited	892
	2022 Sep 29];71(7):841–9. Available from:	893
	https://pubmed.ncbi.nlm.nih.gov/27208895/	894

67.	Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette FA, Topisirovic I, et al. mTOR	895
	as a central regulator of lifespan and aging. F1000Research [Internet]. 2019 [cited	896
	2022 Sep 29];8. Available from: /pmc/articles/PMC6611156/	897
68.	Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, et al. Key Signaling Pathways	898
	in Aging and Potential Interventions for Healthy Aging. Cells [Internet]. 2021 Mar 1	899
	[cited 2022 Sep 29];10(3):1–26. Available from: /pmc/articles/PMC8002281/	900
69.	Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin	901
	Cell Biol [Internet]. 2015 [cited 2022 Sep 29];33(1):55–66. Available from:	902
	https://pubmed.ncbi.nlm.nih.gov/25554914/	903
70.	Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, et	904
	al. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging	905
	Cell [Internet]. 2019 Oct 1 [cited 2022 Sep 29];18(5). Available from:	906
	/pmc/articles/PMC6718533/	907
71.	Juvinao-Quintero DL, Marioni RE, Ochoa-Rosales C, Russ TC, Deary IJ, van Meurs	908
	JBJ, et al. DNA methylation of blood cells is associated with prevalent type 2	909
	diabetes in a meta-analysis of four European cohorts. Clin Epigenetics [Internet].	910
	2021 Dec 1 [cited 2022 Sep 30];13(1):1–14. Available from:	911
	https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-021-	912
	01027-3	913
72.	Cardona A, Day FR, Perry JRB, Loh M, Chu AY, Lehne B, et al. Epigenome-wide	914
	association study of incident type 2 diabetes in a British population: EPIC-Norfolk	915
	study. Diabetes [Internet]. 2019 Dec 1 [cited 2022 Sep 30];68(12):2315-26. Available	916
	from: https://pubmed.ncbi.nlm.nih.gov/31506343/	917

73. Walaszczyk E, Luijten M, Spijkerman AMW, Bonder MJ, Lutgers HL, Snieder H, et 918

	al. DNA methylation markers associated with type 2 diabetes, fasting glucose and	919
	HbA1c levels: a systematic review and replication in a case-control sample of the	920
	Lifelines study. Diabetologia [Internet]. 2018 Feb 1 [cited 2022 Sep 30];61(2):354-	921
	68. Available from: https://pubmed.ncbi.nlm.nih.gov/29164275/	922
74.	Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Wnuk M. Downregulation of	923
	methyltransferase Dnmt2 results in condition-dependent telomere shortening and	924
	senescence or apoptosis in mouse fibroblasts. J Cell Physiol [Internet]. 2017 Dec 1	925
	[cited 2022 Sep 29];232(12):3714–26. Available from:	926
	https://pubmed.ncbi.nlm.nih.gov/28177119/	927
75.	Li Z, Qi X, Zhang X, Yu L, Gao L, Kong W, et al. TRDMT1 exhibited protective	928
	effects against LPS-induced inflammation in rats through TLR4-NF-KB/MAPK-TNF-	929
	α pathway. Anim Model Exp Med [Internet]. 2022 Apr 1 [cited 2022 Sep	930
	29];5(2):172–82. Available from: https://pubmed.ncbi.nlm.nih.gov/35474613/	931
		932